Department of Electrical and Mining Engineering

Prof LW Snyman

College of Science, Engineering and Technology
School of Engineering
Department: Electrical and Mining Engineering
Research Professor
Tel: 011 471 2354
E-mail: snymalw@unisa.ac.za

Qualifications

  • B.Sc.
  • B.Sc Hons.
  • M.Sc. (Physics)
  • PhD degree in  optoelectronics  from the Nelson Mandela Metropolitan University

NRF Rating

C3

Currently teaching

  • Post graduate supervision of Masters and doctoral students.
  • Conduction of research and development projects in the above areas of expertise.
  • Publication of research and development outputs in the above areas of specialisation for broader utilisation of the SA and international communities.
  • Study material development for UNISA online courses on Electronics, Optoelectronics, Microelectronics and Photonics
  • Mentor for junior lectures in the above areas of specialisation
  • Community Outreach actions, SMME creation and Technology Transfer to TVET students

Fields of academic interests

Research interests

  • Renewable Energy Systems
  • Telecommunication Systems
  • Optoelectronics
  • CMOS Integrated Circuit Design
  • Silicon Photonics

Books

  1. K.  Xu, W. Sun, K.A. Ogudo, L. W. Snyman, J-L. Polleux, Q. Yu and G. Li  (2014). Silicon Avalanche based   Si LEds   and  their  potential  integration  into CMOS  and  RF   bipolar  technology”  , Advances in Optical Communication,  edited by Narottam Das, ISBN 978-953-51-1730-8, pages  115 -141,   Publisher: InTech, Chapters published November 19, 2014 under CC BY 3.0 license DOI: 10.5772/58505

  2. L. W. Snyman (2011). Integrating Micro-Photonic Systems and MOEMS into Standard Silicon CMOS Integrated Circuitry, Optoelectronics - Devices and Applications, Prof. P. Predeep (Ed.), ISBN: 978-953-307-576-1, InTech, DOI: 10.5772/18810. Available from: http://www.intechopen.com/books/optoelectronics-devices-and-applications/integrating-micro-photonic-systems-and-moems-into-standard-silicon-cmos-integrated-circuitry

Conference  proceeding  articles

  1. LW Snyman, JL Polleux, K Xu , “Stimulation of 450, 650 and 850 nm optical emissions from custom designed silicon LED devices by utilizing carrier energy and carrier momentum engineering”, Fourth Conference on Sensors, MEMS and Electro-Optic Systems, Kruger National Park, Proc. of SPIE Vol 10036, 1003603-1 , 2017.
  2. TA Okhai, LW Snyman, JL Polleux,  ” Wavelength dispersion characteristics of integrated Silicon Avalanche LEDs–Potential applications in futuristic on-chip micro-and nano-biosensors”,  Fourth Conference on Sensors, MEMS and Electro-Optic Systems,  Kruger  National  Park,  Proc SPIE. 10036,   1003604-1003604-22, 2017.
  3. Lukas W. Snyman , Kaikai  Xu   and  Jean-Luc Polleux, “Progresses  with  realizations of  Si Av LEDs (650 – 750nm emission)  in  CMOS and  RF  bipolar  integrated  circuitry – Designs  and  Applications”, Presented  as  main keynote   plenary   address  at  the  IEEE International Advanced Technology Electronic Automation and Control Conference, Chongqing,  (to  be  published  as conference proceeding in a ISI  journal). 19-20 December 2015.  
  4. LW Snyman, K Xu, JL Polleux, “Progresses with realizations of Si Av LEDs (650 -750nm wavelength) in CMOS and RF Bipolar Integrated Circuitry - Designs and applications”,  2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference , USA, 2015.
  5. K Xu, N Ning, KA Ogudo, JL Polleux, Q Yu, LW Snyman ,  “Light emission in silicon: from device physics to applications”  , International Workshop on Thin Films for Electronics, Electro-Optics, Energy.,  USA, 2015.
  6. K Xu,  B  Huang, K  Ogudo , L.W. Snyman H Chgen , “Light  Emitting Device  in Standard  CMOS Technology”  ,    POEM 2015 International  Photonics and  OptoElectronics  Meeting, june  2015. Published by Optical Society  of America  at  viewmedia.cfm.cfm?uri=OEDI-2015-OT1C.3 &seq=0  (ISBN  978-1-943580-01-9) (invited paper ) . 
  7. K. Xu, N Ning, K Ogudo, J-l Polleux Q  Xu, and L. W. Snyman, “ Light Emission  in Silicon : From  Device Physics to Applications’, Drom International Workshop on Thin Films ponElectron Optics , Energy  and Sensors , Proceedings of SPIE  vol 9667, pp966701-1 to 10. July   2015. (ISBN  9781628418866) Doi 10.1117/12.2229403.  (invited  paper)
  8. Kingsley A. Ogudo; Lukas W. Snyman; Jean-Luc Polleux; Carlos Viana; Zerihun Tegegne, “Realization of 10 GHz minus 30dB on-chip micro-optical links with Si-Ge RF bi-polar technology”, Proc. SPIE. 9257, Sensors, MEMS and Electro-Optical Systems, 92570I.  pp  92570I-1  to   92570I-16, (June 23, 2014) doi: 10.1117/12.2064737; ISSN 0277-786X; ISBN 9781628413243
  9. L.  W.  Snyman, K. A. Ogudo,  (Tshwane  University  of Technology,  South  Africa ),  J-L. Polleux ,  C. Viana  and  S. Wahl ,  “ High  Intensity  100 nW   5GHz  Silicon Avalanche  LED    using  graded  junction    and  carrier  momentum engineering “ , SPIE  PHOTONICS  WEST CONFERENCE,  22 – 27  January  2014,  Moscone Centre,  San Francisco.  Published : Proc. SPIE. 8990, Silicon Photonics IX, 89900L. (March 08, 2014) doi: 10.1117/12.2038195 ; ISSN 0277-786X; ISBN  9780819499035
  10. K. A. Ogudo, L. W. Snyman,(Tshwane  University  of Technology,  South  Africa ),  J-L. Polleux , C. Viana and Z. Tegegne ,  “10 – 40 GHz   on- chip micro- optical links  with  all  integrated Si Av LED  optical sources , waveguides  and  Si-Ge detector technology”,  SPIE  PHOTONICS  WEST CONFERENCE, 22 – 27  January  2014,  Moscone Centre,  San Francisco.. Published : Proc. SPIE. 8991, Optical Interconnects XIV, 899108. (March 08, 2014) doi: 10.1117/12.2038079 ;  ISSN 0277-786X; ISBN 97800819499042

Journal articles

Articles in Peer Reviewed Scientific Journals:

  1. L.W.Snyman, JL Polleux, KA Ogudo, M. Du Plessis , ‘Stimulating 600-650 nm Wavelength Optical Emission in Monolithically Integrated Silicon LEDs through controlled Injection-Avalanche and Carrier Density Balancing Technology , ‘   IEEE  Journal  of Quantum  Electronics,  Volume 53,  No 5 ,  p1-9 ,   October   2017  (DOI : 10.1109/JQE.2017.2736254)  (ISSN 0018-9197).

  2. K Xu, LW Snyman, H Aharon,   Si light-emitting device in integrated photonic CMOS ICs,  Optical Materials 69, 274-282, 2, 2017.

  3. K. Xu, KA Ogudo, LW Snyman, H Aharoni,   Silicon light-emitting device for fast optical interconnect and fast sensing applications in the GHz frequency range in standard IC technology; Optoelectronics and Advanced Materials, Rapid Communications 11 (3-4), 164 ., 2017.

  4. K.Xu, L.W.Snyman,J-L Polleux  “A CMOS “Microdisplay Utilizing Hot Carrier Electroluminescence From Reverse-biased Si PN Junctions” Journal of Physics Conference Series 844(1):012040 · June 2017 844 (1), 012040, 2017.

  5. R Nel, B Van Zyl, LW Snyman,   Analysing the effects of phase sensitivity in low frequency primary microphone calibrations, Applied Acoustics 27, 95-104, 2017

  6. K Xu, LW Snyman, JL Polleux, KA Ogudo, C Viana, Q Yu, GP Li,   “ Silicon LEDs toward high frequency on-chip link”  Optik-International Journal for Light and Electron Optics 127 (17), 7002-7020, 2016.

  7. Z Zhang, K XUb, J Yuan, Y Wang, KA Ogudo, C Viana, JL Polleux, QI YU  and L.W. Snyman , “Silicon light-emitting device for high speed analog-to-digital conversion”,   JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS 18 (9-10), 737-744,  2016.

  8. Xu, K., Ogudo, K.A., Polleux, J.-L., Viana, C., Ma, Z., Li, Z., Yu, Q., Li, G., Snyman , L.W.,   Light Emitting Devices in Si CMOS and RF Bipolar Integrated Circuits  2016       LEUKOS - Journal of Illuminating Engineering Society of North America , 12 ( 4 ) pp. 203 - 212 . 1550-2716 (Online)), DOI:    10.1080/15502724.2015.1134333

  9. K. i Xu, L. W. Snyman, Jean-Luc Polleux, H.  Chen, and G.  Li ;   “Silicon Light-Emitting Device with Application in the Micro-Opto-Electro-Mechanical Systems” ;  International Journal of Materials, Mechanics and Manufacturing, Vol. 3, No. 4,   pp282- 286 ,   2015   (Invited  paper)  (ISSN: 1793-8198)

  10. L. W. Snyman,  K.  Xu, J-L.  Polleux, K. A. Ogudo,  and C.  Viana ;  “ Higher Intensity SiAvLEDs in an RF Bipolar Process Through Carrier Energy and Carrier  Momentum Engineering” ;  IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 51, NO. 7, JULY 2015, pp  3200110- 3200125 (DOI:  10.1109/JQE.2015.2427036) (Micrograph   request  for  front  page  of journal).  (ISSN: 0018-9197)

  11. K.A. Ogudo,  D. Schmieder,   D. Foty  and   L. W. Snyman.  Optical  propagation  and refraction in silicon  complementary  metal-oxide-semiconductor structures  at  750nm:  Toward  on chip  optical links  and micro-photonic  systems ,  Journal  of  Micro and  Nano Litography, MEMS, MOEMS, 12 (1)  013015 ,  pp  1 -13,   Jan-March 2013.

  12. L. W. Snyman ,   M. du Plessis     and   E. Bellotti  , “ Photonic transitions (1.4 eV- 2.8 eV)  in Silicon  p+np+  injection-avalanche CMOS LEDs  as function of  depletion layer profiling and  defect  engineering”, IEEE  Journal of   Quantum Electronics  (USA),  vol. 46, no. 6, pp 906-919,  March  2010 .

Patents:

(In reverse chronical order) (Si CMOS related)
  1.  "Stimulated  650 nm wavelength  Avalanche  Mode Si LED ” by  Snyman, LW,  SA 2016/06148 of  6 September Submitted:  PCT   International Patenting, Europe, October 2017.
  2. “CMOS–based MicroPhotonic systems”   by Snyman, LW, of 30Nov June 2011(WO/2012/075511) (PCT/ZA2011/000090)
    Submitted:  China (201180066252.9) (assigned to TUT) (Royalties to LW Snyman)
    Submitted: EP Office   (2011826188) (assigned to TUT) (Royalties to LW Snyman)
  3. “CMOS  MOEMS  Sensor Device”    by Snyman , LW ,  of    June 2010    PCT/ZA2010/00033
    Granted:  SA (2011/04343) (assigned to TUT) (Royalties to LW Snyman)
    Granted:  EPO (2010819670)  (Assigned to TUT) (Royalties  to LW Snyman)
    Granted: USA (13146469) (assigned to TUT) (royalties to LW Snyman)
    Granted:  Korea (1020127000910) (assigned to TUT) (royalties to LW Snyman)
  4. “Wavelength Specific Silicon Light Emitting Structure”   by Snyman, LW, of June 2010,   PCT/ZA2010/0031.
    Granted: SA 2009/04162 (Assigned to TUT) (Royalties to LW Snyman)
    Granted:  EPO (1020127000895). (Assigned to TUT) (Royalties to LW Snyman)
    Granted:  USA US 09,431,577, 2016   (assigned to TUT) (Royalties to LW Snyman)
  5. “All Silicon 750nm and CMOS Based Optical Communication System utilizing Mod-E Avalanche LEDs”  by SNYMAN, LW,  of June  2010,   PCT/ZA2010/00032,
    Granted:  SA 2009/04162 (Assigned to TUT) (Royalties to LW Snyman)
    Granted:  Korea (1020127000884) (Assigned to TUT)  (Royalties  to LW Snyman)
    Granted:   USA (13378215) (Assigned to TUT) (Royalties to LW Snyman)
  6. “Microchip-based   MOEMS and Waveguide device”     by M. du Plessis and  Snyman , LW ,  of    Feb 2009    PCT/ZA2010/00033
  7. Granted : USA  (13146469) (assigned to Univ  Pretoria) (royalties  to LW Snyman)
  8. Semiconductor light emitting device comprising Si Ge hetero-junction”  by L. W  Snyman and  M du Plessis   of  2007
    Granted SA (2010/04754) (Assigned to Univ of Pretoria)   (Royalties to L.W. Snyman)
    Granted EPO (2009705354) (Assigned  to Univ of Pretoria)   (Royalties  to L.W. Snyman)
    Granted:  China (CN101933169A) (Assigned to Univ of Pretoria)   (Royalties to L.W. Snyman)
    Granted: USA   (12865609)    (Assigned to Univ of Pretoria)   (Royalties to L.W. Snyman)
  9. “Semiconductor light emitting device utilizing punch-through effects”   of  2007   by M. du Plessis  and   L. W  Snyman
    Granted:   SA (2010/04753) (Assigned to Univ of Pretoria)   (Royalties to L.W. Snyman)
    Granted :   EPO (2009705354)  Assigned  to Univ of  Pretoria)   (Royalties  to L.W. Snyman)
    Granted:   USA (12863743) Assigned to Univ of Pretoria)   (Royalties to L.W. Snyman)
  10. "Enhancement  of light emission from silicon pn reverse breakdown structures by means of current density  confinement and by insertion of third semiconductor bodies” L.W. Snyman,  M. du Plessis  and  H. Aharoni. Republic of South African  Patent Specification   No 99/7571  of  9  December 1999
    Granted: SA (Assigned to Univ of Pretoria with royalties to LW Snyman).
  11. "Opto-electronic device with separately controllable carrier injection means" by   L.W. Snyman. H. Aharoni, M. Du Plessis, USA Patent of 30 November 1999 (Priority date: 4 March 1996). By Republic of South African, Patent No 96/2528 of 4 March 1996...
    Granted:  SA (96/2528) (Assigned to University of Pretoria,   royalties to L.W .Snyman).
    Granted: USA (6,111,271), (Assigned to University of Pretoria,   royalties to L.W .Snyman).
  12. "Indirect band gap semiconductor opto-electronic device", of 1997 by L.W. Snyman. H. Aharoni, M. Du Plessis,
    Granted: SA (96/2478) (Assigned to University of Pretoria, royalties to L.W .Snyman)
    Granted: USA (5,994,720), (Assigned to University of Pretoria,   royalties to   L.W .Snyman)
    (In reverse chronical order)  (Renewable Energy Related)
  13. “Water production from wind solar” Snyman, Lukas LW CSET Provisional SA 2017/00444 South Africa 19-Jan-17
  14. “Thermal Energy Extractor System (Dual thermal cycle) (Solar Power System) by  Snyman, Lukas LW CSET Provisional SA 2016/07673 South Africa 08-Nov-16
  15. “Complete - Roof Solar Thermal Energy Collector  Snyman” by Snyman,  Lukas LW Filed   National SA 2016/05297 South Africa  01-Aug-16
  16. “ Electronic controller for household energy control based on timing and tarriff data”  by  Snyman, Lukas LW CSET Provisional SA 2015/04789 South Africa 03-Jul-15,  PCT    PCT/ZA2016/050021 , 01-Jul-16
  17. “Thermal to Electricity Energy convertor through advanced microprocessor control
    Filed in SA by   UNISA   (March 2016)
  18. Increasing   Thermal to Electricity Energy convertion  through  thermal  recycling  systems
    Filed in SA by UNISA   (March 2016)
  19. “Smart  controller for  a household  solar energy backup  system “ , by  L. W  Snyman,  RSA  Patent 2008/ 567745  of  14  May  2008. 
    Granted: SA (2009/3071) (Assigned to TUT, royalties to L.W. Snyman)
  20. “Thermal- to- Electrical  Energy   conversion  device  Inverted  Peltier Cell  plus  smart  electronic  controller  and  energy extractor ” by  L.W Snyman ZA 2008/567758   of   17 October  2008.
    Granted: RSA Patent No. 2007/9312 (Assigned to TUT, royalties to L.W. Snyman)
  21. “Low cost GSM based   tracking   device   and system” by L. W. Snyman and T Snyman, RSA Patent   No. 2007/9801 of 14 October 2007.
    Granted: SA (2009/1030) (Assigned to TUT, royalties to L.W Snyman and T. Snyman)

Professional positions, fellowships & awards

He is currently the main inventor of five granted U.S.A patents, co-inventor of two granted USA patents, main inventor of two European Patents, main inventor two Korean patents, one Chinese patent, and eleven granted SA patents.

Prof. Snyman won the WIRSAM scientific awards in 1982 and 1984 in South Africa for best lectures at the SA Electron Microscopy Society of SA conferences. In 1987, he received the South African Microelectronics Industries (SAMES) award for best contribution in semiconductor physics and microelectronics in South Africa in 1978. In 2002, he received an Academic Excellence Award as Researcher of the Year at the TUT.

In 2015  he was nominated for the prestigious 2015 BHP Billiton National Science and Technology Forum Award: Photonics: International Year of Light, and received a runner up certificate from the Forum in this regard.   In 2017   he was  nominated   for the   In 2017   BHP Billiton National Science and Technology Forum Award  in the  category:  Innovation  and  Application of Knowledge. In  2017   he  was  awarded  a  prestigious   Special Achievers Award    by   his  Alumni  University,   the  NMNU,     in Port   Elizabeth.

Projects

Available Projects for Post Graduate students

CURRENT ACTIVE RESEARCH PROJECTS (Group: Electronics, Optoelectronics and Renewable Energies):

Available for aspirant student application per dedicated application form though the following link:

P1) Development of low cost thermal collection systems for solar water heating 

Renewable Energies, Development of low cost novel thermal collection systems for solar water heating, thermal energy storage and Thermal Energy to Electricity Conversion.

4 UNISA patents registered, technology transfer and SMME creation possible

P2) Thermal to Electricity Conversion Device and control system

 Renewable Energies,

Development of Prototype Electronic Control and Electronic Conversion systems for Thermal to Electricity Conversion

2 UNISA patents registered, technology transfer and SMME creation possible

P3)     Heat   Transfer and Heat   Storage   systems  

Renewable Energies Development of effective Heat Transfer and Heat Storage systems through novel heat exchangers with copper based coils and platforms

1 UNISA patents registered, technology transfer SMME creation possible

P4 Development of optimized, efficient   and low cost “Air to Water” conversion systems  

Renewable Energies

Development of optimized, efficient and low cost “Air to Water” conversion systems through thermal cycling, air flow dynamics and advanced Water Heat Transfer and Heat Storage systems through novel heat exchangers with copper based coils and platforms

(1 UNISA patents registered, technology transfer and SMME creation possible)

P5) Low Cost Wind Turbine Energy Generation Systems

Renewable Energies

Development of optimized, efficient “Low Cost Wind Turbine Energy Generation System “conversion systems through optimal blade design, system   design and advanced   Electronic Control Platforms

1 UNISA patents registered, technology transfer and SMME creation possible)

P6 Development of Man to Machine Intercaing telecommunication systems

A number of projects relating to the development of control and cellular and free space    communication between Renewable Energy Systems and the user, the Grid Suppliers and Regulatory bodies are in development   

P7) Physical modelling of inter-band and intra-band carrier transitions processes using new device design techniques for futuristic on chip optical   communication systems (Ph.D.  only)

Next generation optical computing and energy efficient signal and data   processing, and using the youngest experimental indications obtained from previous designs and realizations, using avalanche field control technologies and forward bias p+n junction technology. Investigations will particularly be focus on sub 1000nm optical emissions since this route enable fabrication of both optical source, wave guide and detectors on the same chip. Above 1000nm devices will also be considered using Si Ge detectors. These devices include both two terminals, one junction devices as well as three terminal multi-junction devices

(Collaborations: TWENTE (Netherlands), ESIEE (France), BRICS Accord: Brazil, UEST (China); student exchanges possible)

P8 Design and realization of CMOS LED structures that will optically confine, direct and intensify the emitted optical radiation in silicon integrated   circuitry (futuristic   on chip   optical   communication systems) (Ph.D.  only).

Next generation optical computing and energy efficient signal and data processing, Field control technology through lateral and vertical gated technology will primarily be used. Appropriate filtering of emitted radiation is also done by enhanced processing and simulation techniques

(Collaborations: TWENTE (Netherlands), ESIEE (France), BRICS Accord: Brazil, UEST (China); student exchanges possible)

P9) Design of complete optical link, opto-coupling and wave-guiding structures in Silicon CMOS integrated circuitry (Ph.D  only )

Next generation optical computing and energy efficient signal and data processing. Design of complete optical link, opto-coupling and wave-guiding structures, and advanced trans-impedance amplifiers and lateral -incident CMOS detectors as building blocks. Utilization of CMOS Si technology, SOI technology and Si -Ge bipolar process technology routes will be investigated. Particularly, a Si Ge bipolar process will be intensively investigated. This process enables the realisation of both high frequency optical integrated circuits in a standard process that is routinely used for cell phone component fabrication in Europe. Fabrication of complete optical link and optical interconnect structures.

(Collaborations: TWENTE (Netherlands), ESIEE (France), BRICS Accord: Brazil, UEST (China); student   exchanges possible)

P10) Realization first iteration implementation Si LED’ based micro- optical sensors (temperature, gas, bio-materials) (Ph.D.   only)

Realization first iteration implementation of avalanche based Si LED's in micro- optical sensors performing various functions as initial goals such as on chip micro chemical, gas sensors and mechanical sensors that can at ease be integrated with adjacent driving and signal processing circuitry will be i nvestigated. Numerous new and innovative applications are envisaged with such technology.

(Collaborations: TWENTE (Netherlands), ESIEE (France), BRICS Accord: Brazil, UEST (China); student exchanges possible)

(Collaborations:  TWENTE (Netherlands), ESIEE (France), BRICS   Accord: Brazil, UEST (China); student   exchanges possible)

 BURSARY AND FINANCIAL SUPPORT AS AVAILABLE:

  • Through application on our web pages’ system, aspirant students whose applications have been approved on the E APPLY SYSTEM can apply for post graduate bursaries as well as incorporation in Research Assistant and Teaching Assistant activities at extra remuneration at the choice and selection and approval by both supervisor and student.   
  • UNISA post graduate bursaries of up to R40 000 are available  

Post-Doctoral applications of up to R150 0000 are available 

Research assistantships and Teaching Assistants of up to R40 000 is avilable.

  • Annual Short Course attendance in Creativity, Entrepreneurship, Technology Transfer modelling, and SMME creation   in association with   UNISA Innovation Office, UNISA   Community Development Office, the SA government, Department of Trade and Industry (DTI) is available on request. 

Other

Biography

Lukas W.  Snyman  received the B.Sc.,  B.Sc Hons., M.Sc. and  PhD degrees, in physics and semiconductor physics  from the University of Port Elizabeth (currently the NMMU) , Eastern Cape, South Africa. Since January of 2016,  he  is  a  appointed  dedicated  Research and Development Professor at the College  for Science, Engineering and Technology at the UNISA  Florida  campus in Johannesburg .

Previously he was  Director  of the School  of  Engineering at the University of South Africa (UNISA),  from 2015 to 2017.  Here he made several high impact contributions  with regard to staff expansion,  expertise development , expanding  the post graduate staff  component, and  also  in developing a new Programme qualification mix for the DOE and Higher Qualification Sub Framework  regulations for South Africa.  He  served on the Senate  of UNISA as well as on  the College  Board  of CSET at Florida. During 2017, he also served as chair of the  SA Engineering Council for Professional Engineers (ECSA)  Deans Forum, dealing with  coordination and stimulation  matters with regard  to engineering  in South Africa.

His  current  research interests are  in  Optoelectronics, CMOS Integrated Circuit Design,  Silicon Photonics , Silicon Light  Emitting Diodes  in general .  Particularly, Professor Snyman and his students have  recently realised a series of  optical links  involving an emitter, waveguide and detector on the  same silicon chip with realised modulation frequencies to within the GHz range. Furthermore, Lukas has  interests in  generating innovative technology products in optoelectronics,  photonics,  renewable energies  and embedded  control systems,  with  the intention to  deploy these as innovative and entrepreneurial  products  in the  future South African and African  markets.Professor Snyman is currently a C3 Rated Researcher at the National Research Foundation in South Africa with preferred local and international funding support.

He has to date published approximately 100 research articles, mostly as  articles in accredited international scientific journals,  as articles in  international conference proceedings.  He is the  author and co-author  of  two scholarly chapters  in  scientific books on  the topics of  Integrating Micro-Photonic Systems and MOEMS into Standard Silicon CMOS Integrated Circuitry, and “Silicon Avalanche based  Si LEDs  and their potential integration into CMOS and RF  bipolar technology” (Intech) of 2010  and 2014, respectively.

He is currently  the  main inventor of  six  granted U.S.A  patents,  co-inventor of two granted USA patents, main inventor of  two European Patents,  two Korean patents,  one  Chinese patents, and  eleven  granted  SA  patents.Professor  Snyman is member  of the International Institute for Electrical and Electronic Engineers (IEEE), the Society  for Photonic Instrumentation Engineers (SPIE) ; and regularly  review  scientific submitted articles on optoelectronics at an international level. He is currently a  Research Associate of  the  Ecole Superior et Microelectronique  in France. He also has informal collaborations with a the University  of Twente as well as with  the Key State University in Electronics  in Chengdu, China.

Prof. Snyman won  the WIRSAM scientific awards in 1982 and 1984 in South Africa for  best  lectures at  conferences. In 1987, he received the South African Microelectronics Industries (SAMES) award for best contribution in semiconductor physics and microelectronics in South Africa in 1978. In 2002, he  received  an  Academic Excellence Award as Researcher of the Year” at the TUT.  In  2010, he was designated as  “Innovator of the Year at the  TUT. In 2015, he  was nominated for the prestigious BHP Billiton  National Science  and Technology Forum Award in South Africa : “Photonics: International  Year of  Light”, and received a runner up certificate from the Forum  in this regard. In  February of 2017,  he also received a “ Special Achievers Award  from the Nelson Mandela University in Port Elizabeth  for lifelong contributions to science and engineering  in South Africa as well as for  achievements as an Alumni from the university.   

Further profiles are available on Google Scholar, ResearchGate and LinkedInn